Breaking News

CLOCK – Reasoning Notes (CUET | CLAT | IPMAT)

CLOCK – Reasoning Notes (CUET | CLAT | IPMAT | SSC | BANKING)

Clock questions test your understanding of angles, relative speed, mirror–image logic, time gain/loss, and position of hands in an analogue clock.


1. BASIC CONCEPTS

1.1 Movement of Clock Hands

Hand                                      Movement                       Speed
      Hour hand                                                  360° in 12 hours                            0.5° per minute
     Minute hand                                                  360° in 60 minutes                              6° per minute

1.2 Relative Speed

Minute hand speed – Hour hand speed
= 6° – 0.5° = 5.5° per minute

This is the relative speed used for:

  • Meeting of hands

  • Overlapping

  • Angle-based problems


TYPE 1: ANGLE BETWEEN CLOCK HANDS

Formula

Angle =       | 30H - 5.5M |

Where H = hour, M = minute.


Example 1 (CUET )

Q. Find the angle between the hands at 5:40.

Solution:
Using formula:   |30H - 5.5M|
                           |30(5) - 5.5(40)|
                           |150 - 220| = 70°

Answer: 70°


Example 2 (CLAT )

Q. What is the angle between the hands at 7:20?

Solution:
|30(7) - 5.5(20)| = |210 - 110| = 100°

Answer: 100°


TYPE 2: WHEN DO THE HANDS MEET? (OVERLAP):

Minute and hour hands overlap every 65 5/11 minutes.

General Formula

Time after H o’clock when hands meet:                (H x 60 ) / 11     minutes


Example 3 (SSC)

Q. When will the hands meet after 4 o’clock?

         (4 x 60) / 11   = 240/11

Answer: 21 9/11 minutes past 4


TYPE 3: WHEN DO THE HANDS FORM A RIGHT ANGLE (90°)

Minute and hour hands are 90° apart twice every hour.

Formula

| 30H - 5.5M | = 90

Solve for M.


Example 4 (IPMAT PYQ-Type)

Q. At what time after 3 o’clock will the hands be at 90°?


|90 - 5.5M| = 90

Case 1:

90 - 5.5M = 90                                          M = 0

Case 2:

90 - 5.5M = -90

-5.5M = -180

M = 32.72

Answer: 3:32:43 minutes approx.


TYPE 4: WHEN ARE THE HANDS OPPOSITE (180° APART)?

Formula

| 30H - 5.5M | = 180


Example 5 (CUET PYQ-type)

Q. Find the time when the hands are opposite after 8 o’clock.


|240 - 5.5M| = 180

Solving:


240 - 5.5M = 180

5.5M = 60

M = 10.9

Answer: 8:10:54 minutes


TYPE 5: HANDS AT 0° (OVERLAP), 90°, AND 180° IN GENERAL

List of standard values

Type Time interval
                       Overlap           65 5/11 min
                       90°                                                                   32 8/11 min after every hour (twice)
                       180°                                                         49 1/11 min after every hour

TYPE 6: TIME GAIN/LOSS BY A SLOW OR FAST CLOCK

Formula

Gain or Loss per day = Difference in time shown

Actual time = Given time  / Rate factor 


Example 6

Q. A clock gains 5 minutes in 24 hours. If it shows 7 PM now, what is the real time?

Clock runs 1440 min → shows 1445 min
Rate = 1445/1440

Actual time when clock shows 7 hours =

{420} / {1445/1440} = 418.5 

= 6 : 58.5 PM

Answer: 6:58:30 PM


TYPE 7: CLOCK MIRROR QUESTIONS

Mirror Time Formula (Vertical Mirror)

Mirror Image Time = 11:60 


Example 7 (CLAT PYQ-Type)

Q. A clock shows 3:25. What will be its mirror image?


11:60 - 8:50 = 3:10

Answer: 8:35


Example 8 (CUET PYQ-Type)

Q. What is the mirror image of 8:50?


11:60 - 8:50 = 3:10

Answer: 3:10


TYPE 8: CLOCK HANDS EXCHANGE THEIR POSITIONS

Minute and hour hands exchange positions when:

| 30(H+1) - 5.5M | = | 30H - 5.5(60-M) |


Example 9 (IPMAT PYQ-Type)

Q. At what time between 1 and 2 do the hands exchange positions?

Solving standard result:

Time = {(H x 60) + 180} / {11}

For H = 1:
                                     { 60 + 180}/{11} = 240/ 11 = 21.81


Answer: 1:21:49


TYPE 9: HOW MANY TIMES DO THE HANDS MEET, 90°, 180° IN 12 HOURS?

Event                                     Frequency in 12 Hours
Overlap                                     11 times
Right angle                                     22 times
Opposite                                     11 times

Example 10 (SSC)

Q. How many times are the hands opposite in 24 hours?

11 times in 12 hrs → 22 times in 24 hrs


TYPE 10: SHORTEST DISTANCE BETWEEN HANDS

Formula


Angle = |30H - 5.5M|

Shortest distance =
If angle > 180° → 360° – angle
Else → angle


Example 11 (CUET )

Q. Find the smallest angle between hands at 9:20.


|30(9) - 5.5(20)| = |270 - 110| = 160°

Since 160 < 180 → 160°

Answer: 160°


TYPE 11: SPECIAL QUESTIONS (TRICKY)

Example 12 (Bank PO PYQ-Type)

Q. A clock strikes once at 1 o’clock, twice at 2 o’clock, and so on.
How many times will it strike in 24 hours?

Strikes in 12 hours:

1+2+3+…+12 = 78

In 24 hours:
78 x 2 = 156

Answer: 156


HIGH-LEVEL SUMMARY FORMULAS

1. Angle Formula

|30H - 5.5M|

2. Meeting Time

Hx60 /11

3. Mirror Image


11:60 - Actual Time

4. Opposite Hands


|30H - 5.5M| = 180

5. 90° Hands


|30H - 5.5M| = 90


No comments